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E-mail: Marie-Line.Chabanol@math.u-bordeaux1.fr

Received 22 June 2007, in final form 27 September 2007
Published 23 October 2007
Online at stacks.iop.org/JPhysA/40/13535

Abstract
We compute the three-point correlation function for the eigenvalues of the
Laplacian on quantum star graphs in the limit where the number of edges tends
to infinity. This extends a work by Berkolaiko and Keating, where they get
the two-point correlation function and show that it follows neither Poisson, nor
random matrix statistics. It makes use of the trace formula and combinatorial
analysis.

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

The study of the Laplacian on a metric graph, a concept known as quantum graphs, now
serves as a toy model for quantum chaos [1–3]. Indeed, there exists an exact trace formula
relating eigenvalues and periodic orbits [1, 2, 4]. Moreover, depending on the graphs, exact
computations of these orbits may be possible, whereas they are out of reach in most dynamical
systems. It has thus been shown [1, 5, 6] that spectral statistics of simple generic graphs
follow random matrix statistics when the size of the graph tends to infinity, as expected for
chaotic quantum systems. Star graphs (graphs formed by a central vertex connected to v

other vertices by edges of different lengths) play a special role because of the high degeneracy
of their periodic orbits. As could be expected, this degeneracy breaks the random matrix
statistics; this has been shown by the computation of the two-point correlation function [7, 8].
Moreover, it seems reasonable to expect that random matrix statistics would be retrieved by
gluing some star graphs together (just by one edge). Hence star graphs can really be used as
a toy model for what degeneracy can induce on statistics, and how degeneracy can be broken.
Their simplicity makes exact results easier to obtain: the trace formula for star graphs has been
shown to converge under quite reasonable assumptions [9]. Moreover, star graphs may also be
considered as a discrete version of Seba billiards [10]; indeed the eigenvalues of quantum star
graphs and the energy levels of Seba billiards are solutions of similar equations, so that their
study can also say something about continuous dynamics, not only discrete one. As a step
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further in the understanding of this model, we will here compute the three-point correlation
function of such graphs. Moreover, it is likely to be a useful ingredient for the computation of
the two-point correlation function for glued star graphs. Gluing decreases degeneracy, so that
one could expect another intermediate statistics (double star graphs have been considered in
[11], but their graphs are Fourier graphs, not Neumann graphs as considered here).

Spectral statistics for quantum graphs and the trace formula relating them to periodic
orbits will be recalled in the first part. The second part will state the two-point correlation
function as obtained in [8]. The third part will present the computation of the three-
point correlation function. Perspectives regarding glued graphs will be given in the
conclusion.

2. Quantum graphs: eigenvalues and trace formula

We will start by some vocabulary and notations. Let G = (E, V ) be a graph with a metric
structure: to each edge (i, j) ∈ E ⊂ V ×V is assigned a length lij , such that lij = lj i ; although
the graph is supposed to be non-oriented, that is (i, j) ∈ E ⇒ (j, i) ∈ E, and lij = lj i , we
will consider the edges to be oriented: (i, j) is different from (j, i), it really describes the
edge going from i to j . On each edge (i, j), one can thus define a coordinate x such that
x = 0 corresponds to the vertex i, and x = lij corresponds to the vertex j . A periodic orbit of
length n is a set of n edges (p1, . . . , pn) such that pi ends where pi+1 starts (as well as pn and
p1). A periodic orbit is called primitive if it is not the repetition of a shorter periodic orbit.
A primitive orbit repeated r times is a non-primitive orbit with repetition number r. We will
denote by vj the valence of the vertex j , that is the number of its neighbors. On each edge
(i, j), one looks for the spectrum of the Laplacian. In other words, one wants to find λ and ψij

such that − d2ψij

dx2 = λ2ψij (x). As one looks for eigenfunctions defined on the whole graph, one
imposes continuity relations at each vertex, ψij (0) = ψik(0). Moreover, the function should
have a unique value on a given point, regardless of the sense of the edge it belongs to; hence,
one wants ψij (x) = ψji(lij − x). Finally, one imposes Neumann condition on each vertex∑

j

dψij

dx
|0 = 0. It is then a simple exercise to check that the eigenvalues λ are the solutions of

det(I − e−iλLS) = 0, where S and L are |E| × |E| matrices: L is diagonal with the length of
each edge as a diagonal element, and S is defined by S(i,j),(j,k) = −δi,k + 2

vj
.

The trace formula as obtained in [1] (a derivation specific to star graphs is given
in [9]) states that if d(λ) = ∑

n δ(λ − λn) is the spectral density, then d(λ) = L
2π

+
1
π

∑
n

∑
p∈Pn

lp
rp

Ap cos(λlp). Here L is the total length of all edges, Pn is the set of
all periodic orbits of period n up to cyclic reordering (that is p0, p1, p2 and p1, p2, p0

are the same orbits), lp is the length of the orbit, rp its repetition number, and Ap =∏n
i=1 Spi,pi+1 .

We will work on star graphs with v + 1 vertices (see figure 1): these are graphs with
V = {0, . . . , v} and E = {(0, i), (i, 0), 1 � i � v}: v vertices are all connected to the
center 0. The S-matrix elements are S(0,i),(i,0) = 1 (this corresponds to trivial scattering),
S(i,0),(0,i) = −1 + 2

v
(backscattering) and S(i,0),(0,j) = 2

v
(normal scattering). The lengths will

be taken so that they are incommensurate, and that their distribution is peaked around 1: for
instance, they can be chosen randomly, uniformly in [1 − 1/2v, 1 + 1/2v], each length being
independent from the other ones. With such a distribution, an orbit of period 2k has a length in
[2k −k/v, 2k +k/v]; such intervals for different k’s less than v do not overlap. The interesting
limit will be the limit v that tends to infinity; in this limit, orbits with the biggest contribution
Ap will be orbits with a large number of backscatterings.
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Figure 1. A star graph.

3. Two-point correlation function

The two-point correlation function is defined as R2(x) = (
2π
L

)2〈
d(λ) d

(
λ− 2πx

L

)〉
. The brackets

denote a mean value with respect to the λ’s, that is 〈f 〉 = lim�→∞ 1
2�

∫ �

−�
f (λ) dλ. Using the

trace formula and performing the integral, one gets

R2(x) = 1 +
2

L2

∑
p,p′

lplp′

rprp′
ApAp′δlp−lp′ cos

(
2πxlp

L

)
,

where the sum is over the pairs of periodic orbits (p, p′), up to cyclic permutations, of lengths
lp and lp′ and repetition numbers rp and rp′ .

A combinatorial analysis of periodic orbits leads [8] to the formula

R2(x) = 1 +
∫ +∞

−∞
K(τ) exp(−2iπxτ) dτ,

where K is given near τ = 0 by

K(τ) = exp(−4τ) +
∞∑

j=2

∞∑
M=0

4j

j !
CMτM+j+1.

The CM are defined by

CM = (−2)M
∑

k1+···+kj +n1+···+nj =M

(K + j − 1)!(N + j − 1)!

(M + j − 1)!

j∏
i=1

(
ni+ki

ni

)
(ni + 1)!(ki + 1)!

,

with K = ∑j

i=1 ki and N = ∑j

i=1 ni .
It is found to be different from the Poisson statistics, since K(τ) clearly depends on τ ,

and also different from random matrix statistics, since K(0) = 1 and not 0.

4. Three-point correlation function

The three-point correlation function is defined in a similar way as
(

2π
L

)3〈
d(λ) d

(
λ− 2πx

L

)
d
(
λ−

2πy

L

)〉
λ
. Using the trace formula and developing, it is equal to R2(x) + R2(y) + R2(x − y) −
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2 + R3(x, y), where

R3(x, y) =
(

2

L

)3

lim
�→∞

1

2�

∫ �

−�

∑
p,p′,p′′

lplp′ lp′′

rprp′rp′′
ApAp′Ap′′

× cos(λlp) cos

((
λ − 2πx

L

)
lp′

)
cos

((
λ − 2πy

L

)
lp′′

)
dλ.

The sum is over triplets of periodic orbits (p, p′, p′′), up to cyclic permutations, of lengths
lp, lp′ , lp′′ and repetition numbers rp, rp′ , rp′′ . Performing the integral, one gets

R3(x, y) = 2

L3

∑
p,p′,p′′

lplp′ lp′′

rprp′rp′′
ApAp′Ap′′

[
δlp+lp′−lp′′ cos

(
2π

L
(ylp′′ − xlp′)

)

+ δlp−lp′ +lp′′ cos

(
2π

L
(ylp′′ − xlp′)

)
+ δlp−lp′ −lp′′ cos

(
2π

L
(ylp′′ + xlp′)

)]
.

Let us have a look at the first term enforcing lp′′ = lp + lp′ . The other ones can obviously
be treated in a similar way. We thus have to deal with

R1
3 = 2

L3

∑
p,p′,p′′

lp′′ =lp′ +lp

lplp′(lp + lp′)

rprp′rp′′
ApAp′Ap′′ cos

(
2π

L
(ylp + (y − x)lp′)

)
.

Now, since the edge lengths are incommensurate, the condition lp′′ = lp′ + lp implies that
the orbit p′′ is formed of the union of the edges of orbit p and orbit p′, which we will denote
by (p′′) = (p) ∪ (p′). Moreover, since the edge lengths are sharply peaked around 1, the
length of a periodic orbit of period 2k is nearly 2k and the total length L is nearly 2v.

Thus one gets approximately

R1
3 
 2

v3

∑
k,k′

kk′(k + k′) cos

(
4π

L
(ky + k′(y − x))

) ∑
p period 2k
p′ period 2k′

(p′′)=(p)∪(p′)

ApAp′Ap′′

rprp′rp′′
.

Following [8], we will now take as a parameter the number j of distinct edges visited by
the orbit p′′.

4.1. The j = 1 case

The j = 1 case is a bit special—the orbits p, p′ and p′′ are here all formed of one and the
same edge, for which there are

(
v

1

) = v choices; the repetition number of such an orbit of
period 2k is then rp = k, and the number of backscatterings is also k; thus, the contribution

Ap is
(−1 + 2

v

)k
. Hence, the j = 1 term is

R
1,1
3 = 2

v3
v

∑
k,k′

cos

(
2π

v
(ky + k′(y − x))

) (
−1 +

2

v

)2k+2k′

.

In the v → ∞ limit, putting τ = k
v
, the sum becomes an integral:

R
1,1
3 
 2

∫ ∫
R

+2
dτ dτ ′ e−4τ e−4τ ′

cos(2π(yτ + (y − x)τ ′)).
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4.2. The j = 2 case

This case is still a bit special, because while p′′ passes through two distinct edges, p and p′

may still be restricted to one edge only. The orbit p′′ of period 2k′′ is here formed by two
different edges, denoted by ‘a’ and ‘b’, for which there are

(
v

2

)
choices. It can be described as a

succession of m′′ packets of a and b. The number of scatterings and backscatterings of such an
orbit is respectively 2m′′ (each change of packet contributes) and k′′ −2m′′. Its decomposition
in p ∪ p′ will obviously also depend on the numbers n′′

a of edges a and n′′
b = k′′ − n′′

a of edges
b (we count the edges only when they depart from the root). One then needs to know how
many different orbits p′′ there are with given k′′,m′′, n′′

a, n
′′
b , since they will all contribute the

same. This number, as explained in [8], can be computed as follows: you first divide your a’s
into m′′ packets (order counts), then your b’s into m′′ packets. Reminding that the number of
partitions of an integer N into K parts is

(
N−1
K−1

)
, the number of ways to do this is

(
n′′

a−1
m′′−1

)(
n′′

b−1
m′′−1

)
.

The orbits should be counted up to cyclic permutation, and the weight of each orbit has to be
divided by its repetition number r. But one orbit with a given r corresponds to m′′/r such
decompositions. For example, the orbit aabab has m = 2, r = 1, and actually we get it twice,
since it is the same up to cyclic permutation as abaab. abab has m = 2 and r = 2, and it is
obtained only once. Hence each decomposition gets a 1/m′′ factor, as well as a contribution

A′′
p = (−1 + 2

v

)k′′−2m′′(
2
v

)2m′′
.

Each such orbit has then to be decomposed into two orbits p and p′, composed of
respectively naa’s and n′

a = n′′
a − naa’s (and nb and n′

bb’s), forming respectively m and m′

packets. The period of p is 2(na + nb). One has to pay attention to the fact that na can be 0, in
which case m = 1 but the number of scatterings is then 0 and not 2 (this does not happen for
j > 1 in the case of the two-point correlation function computed in [8] since there are then
only two orbits p and p′ visiting the same edges). This term has to be computed separately.

Putting all that together, the term R̃
1,2
3 where p, p′ and p′′ are all composed of two

different edges is

R̃
1,2
3 = 2

v3

(v

2

) ∑
n′′

a ,n
′′
b

n′′
a−1∑

na=1
n′
a=n′′

a−na

n′′
b−1∑

nb=1

n′
b
=n′′

b
−nb

min(na,nb)∑
m=1

min(n′
a ,n

′
b)∑

m′=1

min(n′′
a ,n

′′
b)∑

m′′=1

(n′′
a + n′′

b)(n
′
a + n′

b)(na + nb)

× cos

(
2π

v
((na + nb)y + (y − x)(n′

a + n′
b))

)(
−1 +

2

v

)2n′′
a+2n′′

b−2(m+m′+m′′)

×
(

n′′
a−1

m′′−1

)(
n′′

b−1
m′′−1

)
m′′

(
n′

a−1
m′−1

)(
n′

b−1
m′−1

)
m′

(
na−1
m−1

)(
nb−1
m−1

)
m

(
2

v

)2(m+m′+m′′)

.

One can now perform the v → ∞ limit: denoting q∗
i = n∗

i

v
(the * is either void, ’ or ′′), sums

over n’s turn into integrals over q’s , powers of
(
1 − 2

v

)
turn into exponentials of q’s, terms

such as (n−1)!
(n−m)! turn into (qv)m−1. Hence, writing q ′ = q ′′ − q:

R̃
1,2
3 


∫
(R+)4

dqa dqb dq ′′
a dq ′′

b (qa + qb)(q
′′
a + q ′′

b )(q ′
a + q ′

b)

× cos(2π((qa + qb)y + (y − x)(q ′
a + q ′

b)))

× exp(−4(q ′′
a + q ′′

b ))43
∑
m′′�1

(4q ′′
a q ′′

b )m
′′−1

(m′′ − 1)!m′′!

∑
m′�1

(4q ′
aq

′
b)

m′−1

(m′ − 1)!m′!

∑
m�1

(4qaqb)
m−1

(m − 1)!m!
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where the integral is over {q ′′
a,b � 0 and 0 � qa,b � q ′′

a,b}. Using the modified Bessel function

I1(z) = (z/2)
∑

k∈N

(z2/4)k

k!(k+1)! , and denoting I(x) = I1(4
√

x)/
√

x, one gets

R̃
1,2
3 
 8

∫ ∫
(R+)2

dτ dτ ′ e−4τ e−4τ ′
cos(2π(yτ + (y − x)τ ′)ττ ′(τ + τ ′)

×
∫ τ

0
dq

∫ τ ′

0
dq ′I((q + q ′)(τ + τ ′ − q − q ′))I(q(τ − q))I(q ′(τ ′ − q ′)).

Let us now look at the case where one of the orbits (p, p′) is composed of only one edge;
for example, the contribution of the term na = 0 (and thus n′

a = n′′
a) is

2

v3

(v

2

) ∑
n′′

a ,n
′′
b

min(n′′
a ,n

′′
b)∑

m′′=1

n′′
b−1∑

nb=1

n′
b
=n′′

b
−nb

min(n′′
a ,n

′
b)∑

m′=1

(n′′
a + n′′

b)(n
′′
a + n′

b)

(
n′′

a−1
m′′−1

)(
n′′

b−1
m′′−1

)
m′′

(
n′′

a−1
m′−1

)(
n′

b−1
m′−1

)
m′

× cos

(
2π

v
(nby + (y − x)(n′′

a + n′
b))

)(
−1 +

2

v

)2(n′′
a+n′′

b−m′−m′′) (
2

v

)2(m′+m′′)

.

Since there are two symbols a and b, and since there are two orbits p and p′ that can be
degenerate, the total contribution R̄

1,2
3 of the ‘one degenerate orbit’ case is, when v tends to

infinity,

R̄
1,2
3 
 8

∫ ∫
(R+)2

dτ dτ ′ e−4τ e−4τ ′
cos(2π(yτ + (y − x)τ ′))(τ + τ ′)

×
[
τ ′

∫ τ ′

0
dq I(q(τ + τ ′ − q))I(q(τ ′ − q)) + τ

∫ τ

0
dq I(q(τ + τ ′ − q))I(q(τ − q))

]
.

When both orbits p and p′ consist of one edge (this problem is specific to the j = 2 case),
the contribution R̂

1,2
3 is

R̂
1,2
3 = 2

v3

(v

2

) ∑
n′′

a ,n
′′
b

min(n′′
a ,n

′′
b)∑

m′′=1

n′′
an

′′
b(n

′′
a + n′′

b) cos

(
2π

v
(n′′

by + n′′
a(y − x))

)

×
(

n′′
a−1

m′′−1

)(
n′′

b−1
m′′−1

)
m′′

1

n′′
an

′′
b

(
−1 +

2

v

)2n′′
a+2n′′

b−2m′′ (
2

v

)2m′′



∫ ∫

(R+)2
dτ dτ ′ e−4τ e−4τ ′

cos(2π(yτ + (y − x)τ ′)(τ + τ ′)I(ττ ′).

All in all, this gives

R
1,2
3 = R̃

1,2
3 + R̄

1,2
3 + R̂

1,2
3 =

∫ ∫
(R+)2

dτ dτ ′ e−4τ e−4τ ′
cos(2π(yτ + (y − x)τ ′)(τ + τ ′)

×
[
I(ττ ′) + 8ττ ′

∫ τ

0
dq

∫ τ ′

0
dq ′I((q + q ′)(τ + τ ′ − q − q ′))I(q(τ − q))I(q ′(τ ′ − q ′))

+ 8τ ′
∫ τ ′

0
dqI(q(τ + τ ′ − q))I(q(τ ′ − q)) + 8τ

∫ τ

0
dq I(q(τ + τ ′ − q))I(q(τ − q))

]
.

4.3. The j > 2 case

The orbit p′′ is now formed by j edges, denoted by (1, 2, . . . j) for which there are
(

v

j

)
choices. We will denote by n′′

i the number of edges i in the orbit p′′, by m′′
i the number of
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groups of adjacent i, and by n′′ and m′′ the corresponding vectors of Z
j . For example, the

orbit p′′ = 11212332 has j = 3, n′′ = (3, 3, 2) and m′′ = (2, 3, 1). The period of the orbit
is 2

∑j

i=1 n′′
i = 2N ′′, the number of scatterings is the number of groups M ′′ = ∑j

i=1 m′′
j and

the number of backscatterings is
∑j

i=1(n
′′
j − m′′

j ) = N ′′ − M ′′. We will denote by Qm′′
n′′ the

number of orbits with given j, n′′ and m′′, each weighted by 1/rp′′ .
Such an orbit has to be decomposed into two orbits p and p′, consisting respectively of

ni and n′
i = n′′

i − ni edges i, and of mi and m′
i groups of i. Some ni or n′

i can be zero, but not
all of them, and as in the j = 2 case, we will have to consider separately the case where all
the ni are zero but one.

To lighten the formulae, we will denote by
∏∗

T ∗ = T T ′T ′′ (where T can be any

quantity we have defined for p, p′ and p′′); 1 def= (1, 1, . . . , 1); if u and v are vectors,

U
def= ∑j

i=1 ui, u
v def= ∏j

i=1 u
vi

i , u!
def= ∏j

i=1(ui)! and u � v means ui � vi for all i.
In the general case where all orbits consist of at least two different edges, we have

R̃
1,j

3 = 2

v3

(
v

j

)∑ ′
NN ′′(N ′′ − N) cos

(
2π

v
(N ′′y − x(N ′′ − N))

)

×
∗∏

Qm∗
n∗

∗∏(
−1 +

2

v

)k∗−M∗ (
2

v

)M∗

.

Here
∑ ′

denotes a sum over the vectors n∗ and m∗ satisfying⎧⎪⎨
⎪⎩

0 � n � n′′

n′ = n′′ − n

1 � m∗ � n∗.

(Rigorously, we should avoid the case where n or n′ is 0, but thanks to the 1
v3 term, its

contribution will disappear when the sums turn into integrals in the v → ∞ limit.)
All we need now is to determine the numbers Qm∗

n∗ . The computation is done in [8], let
us just present the ideas behind. We will count the sequences of (1, 2, . . . , j) such that there
are ni i’s and mi groups of i, starting by a group of 1, and not ending by a group of 1. Due
to cyclic permutations, this is not exactly the same as counting periodic orbits, but nearly; for
example, the orbit 11212332 corresponds to the n1/r = 2 sequences 11212332 and 12332112,
whereas the orbit 23112311 corresponds to the only n1/r = 1 sequence 11231123. Q is then
exactly the number of such sequences divided by n1. To compute this number, one counts the
number of ways to put the ni i’s in mi packets, and then to arrange such packets, starting by 1,
keeping the order of the groups of a given symbol, not ending with 1, and in such a way that two
groups of the same symbol are not neighbors. The first step gives a factor

∏j

i=1

(
ni−1
mi−1

)
. The

second step is the most tricky one; it can be evaluated using an exclusion/inclusion principle.
All in all, this gives

Qm
n =

j∏
i=1

(
ni − 1

mi − 1

)
(−1)M

∑
1�t�m

(−1)T

T

(
T

t1, . . . , tj

) j∏
i=1

(
mi − 1

ti − 1

)
.

Now all one has to do is to perform the v → ∞ limit. Using
∑∞

m=1

∑m
t=1 = ∑∞

t=1

∑∞
m=t

and
∑∞

m=t
xm−1

(m−t)! = xt−1 exp x and introducing τ = ∑j

i=1 qj , one gets

R̃
1,j

3 
 2

j !

∑
t,t′,t′′

∫
q′′�0

j∏
i=1

dq ′′
j

∫
0�q�q′′

j∏
i=1

dqj ττ ′′(τ ′′ − τ) cos(2π(τx + τ ′′(y − x)))

×
∏ ∗

(q∗)t∗−1 (T − 1)!(T ′ − 1)!(T ′′ − 1)!∏ ∗
t∗!(t∗ − 1)!

(−2)T +T ′+T ′′
.
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Using the identity
∫
qi�0,

∑j

i=1 qi=τ
dq1 · · · dqj−1

∏j

i=1 q
mi

i =
∏j

i=1 mi !
(M+j−1)!τ

M+j−1 and

developing (q′′)t′′−1 = (q + q′)t′′−1, this becomes

R̃
1,j

3 
 2

j !

∫ ∫
R+2

dτ dτ ′(τ + τ ′) cos(2π(yτ + (y − x)τ ′))
∑
t�1

∑
t′�1

∑
t′′�1

∑
0�s<t′′

×
j∏

i=1

(
si+ti−1

si

)(
t ′′i +t ′i−si−2

t ′i−1

)
(ti)!(t ′i )!(t

′′
i )!

(T − 1)!(T ′ − 1)!(T ′′ − 1)!

(S + T − 1)!(T ′′ + T ′ − S − j − 1)!

× (−2)T +T ′+T ′′
τS+T (τ ′)T

′+T ′′−S−j .

The case where p consists of only one edge gives a factor

2j

v3

(
v

j

) 2∑
N ′′(N ′′ − N) cos

(
2π

v
(N ′′y − x(N ′′ − N))

)

×Qm′′
n′′ Q

m′
n′

(
−1 +

2

v

)2N ′′−M ′−M ′′ (
2

v

)M ′′+M ′

where
∑2 denotes a sum over the vectors n′′, m′′, m′ and over the integer n1 satisfying⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 � n1 � n′′
1

1 � m′′ � n′′

1 � m′ � n′′

1 � m′
1 � n′′

1 − n1.

Hence, in the limit v → ∞, the contribution of p or p′ consisting of one edge only is

R̄
1,j

3 
 2

(j − 1)!

∫ ∫
R+2

dτ dτ ′(τ + τ ′) cos(2π(yτ + (y − x)τ ′))

×
∑
t ′i ,t

′′
i

t ′′1 −1∑
s=0

(
s+t ′i−1

s

) ∏j

i=2

(
t ′′i +t ′i−2

t ′i−1

)
(t ′′i − 1 − s)!

∏j

i=1(t
′
i )!

∏j

i=1(t
′′
i )!

(T ′ − 1)!(T ′′ − 1)!

(T ′′ + T ′ − t ′′1 + s − j)!
(−2)T

′+T ′′

× [(τ ′)T
′′+T ′−t ′′1 +s−j+1τ t ′′1 −1−s exp(−2τ) + τT ′′+T ′−t ′′1 +s−j+1(τ ′)t

′′
1 −1−s exp(−2τ ′)].

Finally, the contribution for j > 2 is R
1,j

3 = R̃
1,j

3 + R̄
1,j

3 .

4.4. The three-point correlation function

Putting everything back together, the three-point correlation function can be written as
R2(x) + R2(y) + R2(x − y) − 2 +

∫∫
R

+2 dτ dτ ′(cos(2π(yτ + (y − x)τ ′) + cos(2π(yτ ′ −
x(τ + τ ′)) + cos(2π(yτ + xτ ′))F (τ, τ ′), where F = F1 + F2 + F3 + F4 is given by
F1(τ, τ

′) = 2e−4τ e−4τ ′
,

F2(τ, τ
′) = e−4τ e−4τ ′

(τ + τ ′)

[
I(ττ ′) + 8τ ′

∫ τ ′

0
dq I(q(τ + τ ′ − q))I(q(τ ′ − q))

+ 8τ

∫ τ

0
dq I(q(τ + τ ′ − q))I(q(τ − q))

+ 8ττ ′
∫ τ

0
dq

∫ τ ′

0
dq ′I((q + q ′)(τ + τ ′ − q − q ′))I(q(τ − q))I(q ′(τ ′ − q ′))

]
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Figure 2. (a) The function F (line) and its expansion up to order 2 (squares); (b) corresponds to
τ ′ = 0.

F3(τ, τ
′) =

∑
j�3

2

j !
(τ + τ ′)

∑
t�1

∑
t′�1

∑
t′′�1

∑
0�s<t′′

j∏
i=1

(
si+ti−1

si

)(
t ′′i +t ′i−si−2

t ′i−1

)
(ti)!(t ′i )!(t

′′
i )!

× (T − 1)!(T ′ − 1)!(T ′′ − 1)!

(S + T − 1)!(T ′′ + T ′ − S − j − 1)!
(−2)T +T ′+T ′′

τS+T (τ ′)T
′+T ′′−S−j

F4(τ, τ
′) =

∑
j�3

2

(j − 1)!
(τ + τ ′)

∑
t ′i ,t

′′
i

t ′′1 −1∑
s=0

(
s+t ′i−1

s

) ∏j

i=2

(
t ′′i +t ′i−2

t ′i−1

)
(t ′′i − 1 − s)!

∏j

i=1(t
′
i )!

∏j

i=1(t
′′
i )!

× (T ′ − 1)!(T ′′ − 1)!

(T ′′ + T ′ − t ′′1 + s − j)!
(−2)T

′+T ′′
[(τ ′)T

′′+T ′−t ′′1 +s−j+1τ t ′′1 −1−s exp(−2τ)

+ τT ′′+T ′−t ′′1 +s−j+1(τ ′)t
′′
1 −1−s exp(−2τ ′)].

4.5. Small τ, τ ′ expansion

The first contribution for the ‘general’ j th term where no orbit consists of only one edge is
(ττ ′)j (τ + τ ′), and the first contribution when one orbit is degenerate is (τ ′)j (τ + τ ′). Keeping
only the first terms, and using the expansion of I(x) = 2 + 4x + O(x2) when x is small, one
thus gets F(τ, τ ′) = 2 − 6τ − 6τ ′ + 16ττ ′ + 8τ 2 + 8(τ ′)2 + o(τ 2, τ ′2, ττ ′). Figure 2 presents
a graph of the function F, together with the first terms of its expansion.

5. Conclusion and perspectives

We have obtained here a formula for the three-point correlation function of star graphs,
allowing in principle to get its small τ, τ ′ expansion at any fixed order s by keeping terms
up to j = s − 1. One should be able to get the first order of the expansion for the n-point
correlation function in the same way by computing the j = 1 and j = 2 contributions. Since
the statistics of the eigenvalues are characterized by all the n-point correlation functions, this
is a small step toward knowing a bit more of this intermediate statistics for star graphs.

This specific result for the three-point function could also be of some help in computing
the form factor of two star graphs S1 and S2 glued together by an edge e linking their centers.



13544 M-L Chabanol

Indeed, the form factor is a sum over pairs of orbits (p, q) visiting the same edges. Let us
consider all the couples (p, q) corresponding to a given set of edges. To get the main term
in the small τ expansion, it would seem reasonable to group the edges corresponding to each
graph together, and thus to consider first the couples (p, q) such that p and q can be written as
p = p1Ep2E and q = q1Eq2E, where pi and qi are orbits on Si , and E denotes any sequence
e · · · e of edges e. The sum over such p and q should thus involve a sum over (p1, q1) and a sum
over (p2, q2), and the product of the form factors of each star graph should appear here. The
next term would correspond to decompositions p = p1Ep2Ep′

1Ep′
2 and q = q1Eq2E. The

sum over orbits p, q would then involve a sum on each star graph over orbits pi, p
′
i , qi such

that (qi) = (pi) ∪ (p′
i ), similar to the sum computed in the three-point correlation function.

Of course, the exact calculation would involve all the n-point correlation functions as well as
combinatorial factors to insert the E’s, but the first terms of the expansion should already give
an insight of what happens.
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